原发性卵巢功能不全(POI)是指卵巢滤泡的耗竭,导致40岁前不孕。这种情况的特征是月经停止(闭经或少经)至少4个月,促性腺激素水平增加(FSHLH),雌激素水平降低。 1942年,奥尔布赖特
一、原发性卵巢早衰导读
根据《人的基因序列变化与人体疾病表征》,原发性卵巢功能不全简称为POI,是指卵巢滤泡的耗竭,导致40岁前不孕。这种情况的特征是月经停止(闭经或少经)至少4个月,促性腺激素水平增加(FSH>LH),雌激素水平降低。
1942年,奥尔布赖特和他的同事报告了第一例原发性卵巢功能不全。佳学基因发现,对于这种疾病的描术,使用了不同的名称。在国际上也是如此。欧洲人类生殖和胚胎学学会的指南推荐在研究和临床中使用“卵巢早衰”来描述这种疾病。而美国妇产科学会(ACOG)委员会则支持“原发性卵巢功能不全”。美国国立卫生研究院坚持认为这一术语是恰当的,因为有些POI患者可能会出现自发性妊娠;因此,POI可以与自然更年期区分开来,这个术语可以用来描述卵巢功能不全伴闭经表现。一些作者选择了“卵巢发育不全”一词来形容POI,但是如果解剖学上没有出现异常,使用这一词语则明显不当。
佳学基因根据不同的使用场景,选择使用不同的表述方法,目的是为了更好的传递知识。本文采用原发性卵巢功能不全来描述这一疾病。
二、原发性卵巢早衰的疾病表征和患病率
POI患者表现出广泛的临床表型,该病可以在青春期至40岁的女性中发生。患者可表现为原发性闭经,这种情况通常在年轻时诊断为青春期延迟、无乳房发育和月经初潮,而继发性闭经的诊断年龄在20至40岁之间,其特征是青春期发育正常,月经周期不规则闭经。继发性闭经是最常见的POI表型。
POI的广泛临床表现已在不同的人群中得到证实。通过对675名女性原发性卵巢早衰进行的研究表明,继发性闭经发生率为84%,高于原发性闭经(16%)。青春期延迟的特点是患者表现为原发性闭经以及乳房发育不全或不有效(70%),这是由于在这么小的年龄段雌激素水平低所致。相比之下,在另一对74名卵巢早衰所做的研究中,评估了51名原发性闭经和23名继发性闭经。原发性闭经的高患病率可能是由于表型严重,因为原发性闭经主要在内分泌科进行评估,而表现为继发性闭经的轻度表型则倾向于由妇科来处理。
虽然POI的发生情况与种族有关,但缺乏流行病学数据。然而,患病率似乎随着年龄增长而增加(20岁时为1:10000,30岁为1:1000,40岁为1:100)。
在另一行研究中发现,在普通人群中,POI的患病率(1.9%)高于先前所证明的。在1036918名女性中,1.7%表现为自发性POI,其中的0.2%的被诊断为医源性POI。此外,在美国的7个地点对40-55岁的妇女进行了横断面调查(全国妇女研究[SWAN]),确定了11652名妇女中自我报告的POI患病率,没有明显的种族区别。事实上,有1.1%的女性患有POI,其中1.0%是白人,1.4%是非裔美国人,1.4%是西班牙裔,0.5%是中国人,0.1%是日本人。在巴西,POI的患病率仍不清楚。
三、诊断
根据目前的美国和欧洲指南,POI诊断是通过连续两次测量促性腺激素水平,两次之间的间隔至少1个月(绝经期范围内FSH水平升高通常大于20 IU/ml)和闭经至少3或4个月。
POI诊断确认后,应进行染色体分析、脆性X染色体突变(FMR1)分析、肾上腺(21羟化酶)和甲状腺抗体评估,以及盆腔超声检查[1]。这种筛查可能有助于确定POI的病因;然而,已经确定大多数POI病例仍然没有明确的病因,这可能是由于大多数遗传病因分析是采用基因检测的方法,有专家认为,随着基因解码分析方法的采用,更多通过基因检测未能找到病因的卵巢早衰患者可能会由于找到病因而得到更有针对性的治疗。
四、POI病因
原发性卵巢功能不全可由遗传缺陷、自身免疫性疾病、医源性因素(化疗或放疗)、病毒感染或毒素引起,或者尽管进行了详尽的调查,但仍可能是特发性的。遗传缺陷,染色体异常和单基因缺陷可导致POI。同时,基因解码也揭示,多个基因的共同作用,也可以导致卵巢早衰。本文试图介绍卵巢早衰的基因解码研究结果,以指导基因检测进行得更为全面和有效。据透露,佳学基因等机构正在着力研究不同基因导致的卵巢早衰的针对性调理方案,以便于更发的治疗这种影响人类生育和生活水平的疾病。
A、 染色体异常与综合征性卵巢早衰
染色体异常是卵巢早衰的一个公认的原因,其发生率约为10-13%。染色体的数目变化主要发生在X单体(45,X;Turner综合征)、镶嵌型(45,X/46,XX和45,X/47,XXX),X三体(47,XXX),X缺失,X常染色体易位,以及或小或大的重排。通过细胞遗传学分析可以对核型进行数值变化的评估,基因解码倡导的全外显子测序方法最近已成为评估卵巢早衰I和其他内分泌疾病的拷贝数变异(CNVs)的有力工具。此外,综合征性卵巢早衰I也可能是由FMR1基因5'调节区的CGG重复序列的扩增引起的,这导致了脆性-X综合征。在患者中,FMR1的CGG重复数大于200,由于该基因的甲基化和沉默,这种突变被称为有效突变。对于动态突变患者,CGG重复数在55到199之间。在患有卵巢早衰的女性中,应调查FMR1的动态突变,因为大约20%的女性携带者中,这种突变与卵巢早衰相关。此外,从Xq13.3到Xq27的X染色体区域被证明是卵巢功能正常的关键区域(卵巢早衰1[Xq23-Xq27]和POI2[Xq13-Xq21])。此外,平衡X染色体易位断点中断的基因或X染色体点突变也是卵巢早衰的致病基因,这些基因包括包括COL4A6、DACH2、DIF2、NXF5、PGRMC1、POF1B和XPNPEP2。
B、 非综合征性卵巢早衰:基因解码所揭示的新卵巢早衰基因
B-1。已知卵巢早衰基因
卵巢发育和功能相关基因。在基因解码时代,关于特发性卵巢早衰分子基础的信息迅速增加。近年来,大规模测序技术已经确定了一些已知基因的新致病性基因突变(FSHR、GDF9、BMP15、FIGLA和NOBOX)。这些基因首先与卵巢早衰的病因有关,因为它们在发育和/或卵巢功能中的作用。它们在功能上可分为与(1)生殖细胞发育相关的基因,(2)卵子发生和卵泡发生,(3)类固醇生成,和(4)激素信号传导相关的基因。在胚胎发育过程中,大量的生殖细胞因为凋亡过程而消失,参与这一过程的基因突变,如nano3和EIF4ENIF1,可能导致卵巢早衰的发生。此外,许多因素参与卵泡和卵母细胞的募集、发育和成熟。事实上,编码激素受体的基因突变,如FSHR和LHCGR,是卵巢功能损害的明显原因,并可能在临床上引起不同的疾病表征。卵巢功能正常的另一个重要步骤是类固醇生成,雌激素通过它合成。雌激素合成途径的任何改变都可能导致闭经和高FSH水平;然而,抗苗勒氏激素应该是正常的。具有与类固醇生成途径相关的基因突变的女性,如NR5A1和STAR,可能会出现综合征或孤立的卵巢早衰表型。此外,生长因子如TGFβ家族成员(BMP15和GDF9)在卵巢功能中起着关键作用,这些基因的缺陷与卵巢早衰的发生有关。BMP15促进卵巢生长和成熟,可以以常染色体显性遗传和隐性遗传的方式引起卵巢早衰表型(表1)。此外,GDF9蛋白对卵巢卵泡发育也是必不可少的,卵巢早衰患者出现继发性闭经的突变最初被认为是染色体显性遗传;然而,杂合子GDF9+/-雌性小鼠是可生育的,只有Gdf9阴性的雌性小鼠由于初级卵泡阶段的阻塞而不育。这与之前观察到的杂合子错义突变不同。基因解码研究人员一名巴西原发性闭经患者中发现了GDF9基因的纯合子1-bp缺失(c.783delC)突变,这是一种更严重的表型。在过去的二十年中,一些与人类和动物模型中的出生后卵母细胞分化相关的转录因子被相继确定,如NOBOX、SOHLH1、SOHLH2、FIGLA和LHX8。NOBOX能够调节多种卵巢基因,包括GDF9和BMP15。在小鼠中,NOBOX蛋白的缺失会导致原始卵泡的逐渐丧失,从而导致成熟卵泡的缺失。最初,描述了具有显性负效应的杂合子致病基因突变,但是也观察到一个纯合变异的家族病例;一名中国患者也出现了原发性闭经。SOHLH1在卵泡发育的初始阶段[参与生殖细胞的维持。在人类中,SOHLH1的双等位基因突变在两个患有孤立性POI的家族中被鉴定出来。非综合征卵巢早衰还与FIGLA基因杂合缺失有关,FIGLA基因是螺旋-环-螺旋家族的一种转录因子。这种转录因子调节透明带中基因的表达以及其他仅在卵巢中表达的基因;因此,它的缺失或缺陷可能会促进人类和小鼠的卵巢功能衰竭。
减数分裂和DNA修复基因。基因解码普遍采用高通量测序技术全面获得可能引起患者各种复杂表型的致病基因突变,从而揭示了主要在细胞分裂和/或DNA修复中起重要作用的新基因,这些基因包括MCM8、MCM9、STAG3、PSMC3IP、HFM1、NUP107和SYCE1)。卵母细胞在出生前开始减数分裂的第一阶段,在胎儿期停留在第一阶段,当妇女进入青春期时重新开始细胞分裂;次级卵母细胞在排卵时释放。由于卵母细胞处于静息状态,参与减数分裂和DNA修复的基因改变可能导致卵巢功能不全的不同表型。一些辅酶,如STAG3和Syc1,在细胞分裂过程中对突触复合体的正确形成是必不可少的,这些基因的突变导致人类不育。此外,小染色体维持蛋白(MCM8和MCM9)的解旋酶在减数分裂期间的同源重组步骤中起着至关重要的作用。MCM8和MCM9蛋白的缺失促进了小鼠减数分裂过程中的错误,例如MCM8-/-小鼠的减数分裂前期I停止、初级卵泡停止、卵巢dota2吧雷电竞
的频繁发生,以及MCM9-/-小鼠有效缺乏卵母细胞。在过去的几年中,导致MCM8和MCM9蛋白质功能丧失的纯合突变被以高通量测序为基础条件的基因解码分析方法不断被鉴定明确下来。
B-2号。基因解码揭示的新基因
此外,在人类和动物模型中,与卵巢发育和减数分裂有关的卵巢早衰的新病因至少有15个。这些基因按照与卵巢早衰相关的已知基因的相同模式进行分类。
卵巢发育和功能相关基因:BMP受体2(BMPR2)。BMPR2是一种丝氨酸苏氨酸激酶II型受体,它似乎结合BMP因子来影响其配体的下游信号传导,影响卵泡发育。Patiño及其合作者报告了体外证据,证明BMPR2中的p.Ser987Phe突变增加了内质网的亚细胞聚集模式,显示了该基因与分离的卵巢早衰有潜在的关联。
缝隙连接蛋白α4(GJA4)/连接蛋白-37(CX37)。GJA4在卵泡发育中起作用,在小鼠体内该基因的破坏导致卵巢卵泡发生在腔前阶段停止,从而导致女性不育。在2例继发性闭经的卵巢早衰患者中发现GJA4中的杂合子错义变体(c.946G>A:p.Gly316Ser)。虽然这种突变在白种人的对照组中还没有报道,但在非洲个体中普遍观察到。体外研究表明,p.Gly316Ser能够以显性阴性的方式降低细胞表面缝隙连接斑块的表达。其机制可能涉及缝隙连接内吞和溶酶体降解的增加。事实上,在这个法国队列中进行了候选基因研究;因此,没有其他POI候选基因被排除为POI的原因。
含RNA结合信号转导相关蛋白1(KHDRBS1)的KH结构域。KHDRBS1在多种细胞过程中发挥作用,如选择性剪接、细胞周期调控、RNA 3′端形成、肿瘤发生和人类免疫系统调节。KHDRBS1(又名Sam68)在敲除雌性小鼠卵巢中的作用已被研究。Sam68-/-雌性小鼠由于第一次怀孕延迟、产仔量少、卵巢中次级卵泡和腔前卵泡数量减少而表现出低生育能力[98]。利用全外显子组测序(WES),在一名中国母亲和一名患POI的大女儿中发现了一个KHDRBS1杂合子变异(c.460A>G:p.Met154Val)。在另一名患者中也发现了第二个单等位基因突变(c.263C>T:p.Pro88Leu)。体外试验表明KHDRBS1突变(c.460A>G)对选择性剪接的影响;然而,还没有进行体内研究[98]。KHDRBS1的另一个杂合子变体(c.887C>T:p.Pro296Leu)也在一名携带FGFR2变体的POI患者中发现(c.64C>T:p.Arg22Trp)[99]。然而,需要进一步的功能研究来验证其致病性。
自噬相关蛋白7(ATG7)和自噬相关蛋白9(ATG9A)。自噬是一种适应过程,发生在对不同形式的应激反应中,如营养缺乏、生长因子耗竭、感染和缺氧。自噬过程调节许多疾病,包括神经退行性疾病、dota2吧雷电竞
和传染病[100]。自噬因子,如自噬相关蛋白(ATG)及其调节因子,对自噬过程至关重要,包括起始、吞噬细胞成核和膨胀(ATG7和ATG9)、货物隔离、膜密封、自噬体成熟和自噬体与溶酶体融合[100]。小鼠缺乏Atg7会导致中枢神经系统功能受损,导致出生后28周出现行为缺陷和致死性。基因敲除小鼠大脑和小脑皮质也有大量神经元丢失[101]。此外,由于自噬机制的缺陷,卵巢中原始卵泡减少,生殖细胞特异性敲除Atg7促进了雌性小鼠的亚生育能力[102]。在雄性小鼠中,Atg7的破坏会导致顶体的异常形成和异常圆头精子的发育[103],从而导致生育能力低下。Atg9条件敲除小鼠表现出神经功能缺陷,包括轴突及其终末的进行性变性,但不包括神经元细胞体,这些小鼠在出生后4周内死亡[104]。在人类中,在两名分别被诊断为继发性和原发性闭经的患者中,ATG7(c.1209T>A:p.Phe403Leu)和ATG9(c.2272C>T:p.Arg758Cys)有两个单等位基因突变[10,90]。在体外研究中,这些突变通过降低产生自噬体的能力,以单体不足的方式破坏自噬过程[90]。
RNA聚合酶III亚单位H(POLR3H)。RNA聚合酶III合成一些未翻译的RNA,并在细胞生长、分化和先天免疫反应中发挥关键作用[105]。尽管亚单位A和B(POLR3A和POLR3B)与隐性4H综合征(包括髓鞘发育不良、牙髓发育不良、促性腺激素低下和白质营养不良综合征)相关,但在人类疾病的情况下,尚未报告该亚基的突变,甚至是孤立的促性腺激素低下症[109]。
我们之前报道了两个POI不相关家系中POLR3H中的一个新的双等位基因错义突变(c.149A>G:p.Asp50Gly),并用CRISPR/Cas9方法生成了两个小鼠系,以评估POLR3H-p.Asp50Gly突变的内在机制[93]。在具有Polr3hD50G突变的小鼠中观察到早期胚胎致死性[93]。与所有4例患者一样,携带Polr3hD50G纯合子点突变的小鼠表现出青春期延迟。在Polr3hD50G雌性和雄性小鼠中观察到产仔量小,怀孕时间或怀孕时间增加。的确,与野生型小鼠相比,Polr3hD50G小鼠卵巢Foxo3a表达减少,初级卵泡数量更少[93]。这是POLR3H致病性突变导致人类不孕的首个证据。
切口受体2(NOTCH2)。NOTCH通路参与了胎儿和出生后的细胞命运决定和分化过程[110]。相关的蛋白质,包括四个NOTCH受体(NOTCH 1-4)和5个NOTCH配体(锯齿状1-2和DELTA-LIKE 1、3和4),与无脊椎动物(果蝇、秀丽隐杆线虫)和哺乳动物自我更新系统的稳态维持有关[110]。NOTCH信号在调节原始卵泡形成中的功能作用已在小鼠中得到证实[111]。在NOTCH信号抑制剂的存在下,新生卵巢的原始卵泡减少。研究还表明jagg-1、NOTCH2和HES1分别是表达最丰富的配体、受体和靶基因。此外,NOTCH2在原始卵泡的颗粒前细胞中表达[111]。在人类中,NOTCH2与Alagille综合征(ALGS)相关,这是一种常染色体显性多系统疾病,临床定义为肝胆管贫乏和胆汁淤积,并伴有心脏、骨骼和dota2雷竞技
表现(MIM-118450)。此外,Hajdu-Cheney综合征(HJCYS)也与NOTCH2有关,是一种罕见的常染色体显性骨骼疾病,其特征是身材矮小、相貌粗糙和畸形、长骨弯曲和脊椎畸形(MIM-102500)。
最近报道了与POI相关的NOTCH2突变。已鉴定出4例具有不同NOTCH2变异体的患者:1例患者出现原发性闭经,并携带复合杂合子突变(c[7223T>a:p.Leu2408His];[6947C>T:p.Ala2316Val]),3例患者出现继发性闭经,每个患者都携带一个单等位基因变体(c.5411C>T:p.Ser1804Leu,c.7075C>G:p.Pro2359Ala,或c、 5433G>c:p.Gln1811His)。上述3个NOTCH2突变(p.Ser1804Leu、p.Ala2316Val和p.Pro2359Ala)的转录活性已经得到证实,尽管在对照组和具有所有所述突变体的个体之间没有蛋白质水平的差异[94]。
减数分裂和DNA修复基因:参与DNA修复的支架蛋白(SPIDR/KIAA0146)。SPIDR是一种连接解旋酶和同源重组(HR)机制的蛋白质。SPIDR的缺失促进了姐妹染色单体缺陷、基因组不稳定性和对DNA损伤效应的敏感性的增加[112]。在2个有POI的姐妹中发现了一个无意义的纯合突变(c.839G>A:p.Trp280*),其父母为以色列-穆斯林-阿拉伯血统。这对姐妹表现为青春期延迟,促性腺激素水平升高,临床表现有一些差异,包括卵巢发育不全和咖啡色斑(妹妹)或卵巢缺失(姐姐)。两姐妹的核型正常,46,XX,无畸形特征。p.Trp280*突变表明,SPIDR活性在同源重组过程中受损,导致53BP1标记的双链断裂,并在未受干扰的生长过程中造成gH2AX标记的损伤[80]。
MutS同系物4(MSH4)和MutS同源物5(MSH5)。MSH4和MSH5是减数分裂特异性蛋白,是同源染色体重组和正确分离所必需的。携带Msh4或Msh5缺陷的雄性和雌性小鼠由于减数分裂失败而不育[113114],这两种基因都可能参与POI的发病机制。诊断为继发性闭经的两个姐妹被发现在MSH4中存在纯合供体剪接位点突变(c.2355+1G>a:p.Ile743_Lys785del)[81]。在一个中国队列中,在2个分离的POI姐妹中发现了一个新的MSH5纯合子错义突变(c.1459G>T:p.Asp487Tyr)。在一项体外研究中,使用敲除小鼠(Msh5D486Y/D486Y)进行的功能评估显示卵巢萎缩,MSH5破坏损害了DNA同源重组修复[82]。
范科尼贫血互补组(fancom)。FANCM参与修复DNA复制和同源重组。这种基因的单等位基因突变与乳腺癌和卵巢癌的易感性有关。此外,由于缺乏遗传数据或其他功能证据,FANCM不再被列为Fanconi贫血基因,双等位基因突变在该疾病中起着重要作用[115]。然而,在两个被诊断为非综合征性POI的芬兰同胞中发现了FANCM的纯合无义突变(c.5101C>T:p.Gln1701*)。对姐妹的淋巴细胞分析显示,染色体断裂和对丝裂霉素C过敏的程度增加[84]。此外,在一名被诊断患有无精子症的葡萄牙人身上发现了FANCM的双等位基因突变(c.5791C>T:p.Arg1931*)。FANCM突变已被证明与减数分裂缺陷和男性不育有关。
巴索诺克林1号(BNC1)。BNC1是一种锌指蛋白,在睾丸和卵巢的生殖细胞、角质形成细胞和毛囊中高度表达。敲除小鼠卵母细胞中的BNC1可降低RNA聚合酶的转录水平,并导致小而不规则的卵泡形态。事实上,敲除卵巢显示黄体呈现正常排卵,尽管女性出现亚生育[117]。用WES方法对一个有7例POI感染妇女的中国家庭进行筛查,发现BNC1基因有5-bp的杂合子缺失(c.1065_1069)交货:p.Arg356Valfs*6) 一。此外,在4例无关的POI患者中发现了BNC1的杂合子错义变体(c.1595T>c:p.Leu532Pro)[88]。在体外和体内实验中证实了BNC1半抗原的不足。有缺失和错义突变的转染细胞在卵巢中表现出异常的核定位和减数分裂的损伤。携带5-bp缺失的杂合子(Bnc1+/-)和纯合子(Bnc1-/-)小鼠由于卵巢储备减少(即FSH升高、卵巢大小减小和卵泡大小减小)而表现出雌性不育[88]。
含蛋白62的WD重复序列(WDR62)。WDR62是一种广泛表达的支架JNK结合蛋白。这种蛋白在应激后的mRNA稳态中起着调节作用,JNK是它的伙伴[118]。Bilguvar及其合作者[119]首先在10名患者中发现了WDR62的隐性错义和功能缺失突变,并发现这些突变导致了广泛的大脑皮质畸形,包括小头畸形、皮质增厚的厚皮症和胼胝体发育不全。后来,由于有丝分裂缺陷、神经元迁移延迟和神经元分化改变,在神经发生过程中,Wdr62的破坏导致了小头症。这些老鼠也是不育的,并且在出生后的早期阶段体型比正常老鼠小[120]。此外,Wdr62基因敲除小鼠表现出雌性减数分裂起始缺陷,这些缺陷通过JNK1在生殖细胞中的过度表达得以挽救,呈现卵巢减少和卵泡缺失的不孕症[89]。利用WES,研究人员还评估了两例诊断为原发性闭经的散发性POI病例,每个病例都有一个错义突变(c.1796G>A:p.Cys599Tyr)或一个移码突变(c.3203_3206)交货:p.Thr1068fs)在WDR62中。尽管体外研究表明,这些突变的显性负效应受Stra8表达的调控,并且小鼠表型与原发性闭经表型相关,携带p.Cys599Tyr突变的患者在2个与女性不育相关的不同基因(BRCA2和SPTB)中也有3个额外的变体;因此,该患者的遗传病因仍不清楚[89]。
DNA修复相关/乳腺癌2型易感蛋白/范科尼贫血组D1蛋白(BRCA2)。BRCA2参与维持基因组的稳定性,特别是双链DNA修复的同源重组途径的信号传导[121]。Davies及其合作者[122]表明,BRCA2在调节RAD51(一种同源重组和DNA修复所必需的蛋白质)的作用中起着双重作用。因此,BRCA2失活后失去对这些过程的控制可能导致基因组不稳定和肿瘤发生[122]。BRCA2(和BRCA1)的种系单等位基因突变增加了终生癌症的风险;它们首先被描述为家族性病例中的乳腺癌和卵巢癌,其次是散发病例,后来是男性乳腺癌和前列腺癌病例[123]。此外,D1型范科尼贫血是由BRCA2纯合突变引起的。男性和女性患者有多种先天性异常、骨髓衰竭和预期的癌症易感性。在这些患者中,通常包括更年期男性的精子发生改变。非血缘埃塞俄比亚父母所生的两个姐妹被诊断为POI,表现为原发性闭经、青春期延迟、身材矮小、咖啡色斑、小头畸形,其中一个姐妹的急性髓细胞白血病长期缓解[91]。这些兄弟姐妹携带BRCA2的复合杂合子截断突变(约7579德尔格:p.Val2527*]和[9693德拉:p.Ser3231fs16*]). 有趣的是,分离分析显示在他们的母亲中有一个单等位基因BRCA2突变(c.7579delG),诊断为卵巢癌Ⅲ期患者。先证者外周血淋巴细胞染色体断裂,以及RAD51基因未能进入双链DNA断裂,表明对DNA损伤的反应受损。此外,果蝇BRCA2同源体的破坏导致雄性和雌性不育和性腺发育不全[91]。其中1例为散发性突变,其中1例为家族性突变交货:p.Cys3233Trpfs*15] ),分别为[92]。这些病人表现为原发性闭经,但没有发现血液学异常或肿瘤。另外,2个姐妹表现为原发性闭经和小头畸形,被诊断为早发性结直肠癌和乳腺癌。BRCA2的两个变体(c.[6468_6469delTC];[c.8471G>c])在两个兄弟姐妹中都被发现,随后通过长程PCR证实为反式[92]。虽然最后2例可能扩大了BRCA2表型的范围,但其致病性需要进一步的功能验证。
肿瘤蛋白p63(TP63)。TP63是p53家族的一员,是一种与癌症、发育和生殖有关的转录因子[124]。p63和p73的联合丢失损害了p53依赖性凋亡的诱导,以响应小鼠胚胎成纤维细胞的DNA损伤和体内方法[125]。此外,p63,特别是TAp63亚型,通过调节DICER和miR130b来抑制肿瘤的发生和转移[126]。在卵巢中,p63被要求在减数分裂停止期间维持雌性生殖系的完整性。此外,p63在DNA损伤诱导的初级卵母细胞死亡过程中起着关键作用,不涉及p53[126]。p63缺失小鼠的卵母细胞对杀死WT和p53空白小鼠所有卵母细胞的相同剂量的辐射具有抵抗力[126]。TP63与通过常染色体显性遗传(MIM 603273)影响多个器官的复杂综合征有关;然而,最近在一个表现为原发性闭经的孤立POI患者中发现TP63中的1个单等位基因无意义致病性变体(c.1794G>A:p.Arg594*)。需要进一步的功能研究来评估这种变体的致病性。
代谢和蛋白质合成相关基因:RNA聚合酶II亚单位C(POLR2C)。POLR2C编码RNA聚合酶II的最大亚单位,在真核生物中合成信使RNA[127]。在一名患有家族性POI的妇女中发现了POLR2C的杂合子无义突变(c.454A>T:p.Lys152*),她还被诊断为免疫性血小板减少症、恶性贫血和甲状腺功能减退。一项含有p.Lys152*基因敲除的体外研究显示POLR2C水平降低,细胞增殖受损[85]。
五、总结
POI是一种高度异质性的疾病,与75个以上的基因突变有关,这些基因主要与减数分裂和DNA修复有关,每一个基因只影响少数女性。一些基因还没有被证明与POI病因学有关,功能研究或关于受累妇女的额外报告有理由证实它们与POI病因的关系。虽然POI的遗传病因学已经被几个小组研究过,尽管NGS技术已经增加了在POI病因学中起作用的已知基因的数量,并且允许在POI病因学中发现新的参与者,但是大多数病例仍然没有明确的基因诊断。在接下来的几年里,考虑到这种疾病强大的遗传背景和低成本、高通量的并行测序技术的广泛应用,将发现POI表型的新的遗传病因。
卵巢早衰基因解码已发表的证据支持
1.
Hewitt GD, Gerancher KR. ACOG Committee Opinion No. 760: Dysmenorrhea and Endometriosis in the Adolescent. Obstet Gynecol. Obstetr Gynecol. 2018;132(6):E249–E258. [PubMed] [Google Scholar]
2.
Webber L, Davies M, Anderson R, et al. . ESHRE guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–937. [PubMed] [Google Scholar]
3.
Albright F, Smith PH, Fraser R.. A syndrome characterized by primary ovarian insufficiency and decreased stature: report of 11 cases with a digression on hormonal control of axillary and pubic hair. Am J Med Sci. 1942;204:625–648. [Google Scholar]
4.
Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev. 2016;37(6):609–635. [PubMed] [Google Scholar]
5.
Franca MM, FM, Lerario AM, et al. . Screening of targeted panel genes in 50 Brazilian patients with primary ovarian insufficiency. 2019.
6.
Goswami D, Conway GS. Premature ovarian failure. Hum Reprod Update. 2005;11(4):391–410. [PubMed] [Google Scholar]
7.
Lagergren K, Hammar M, Nedstrand E, Bladh M, Sydsjö G. The prevalence of primary ovarian insufficiency in Sweden; a national register study. BMC Womens Health. 2018;18(1):175. [PMC free article] [PubMed] [Google Scholar]
8.
Luborsky JL, Meyer P, Sowers MF, Gold EB, Santoro N. Premature menopause in a multi-ethnic population study of the menopause transition. Hum Reprod. 2003;18(1):199–206. [PubMed] [Google Scholar]
9.
Fonseca DJ, Patiño LC, Suárez YC, et al. . Next generation sequencing in women affected by nonsyndromic premature ovarian failure displays new potential causative genes and mutations. Fertil Steril. 2015;104(1):154–162.e2. [PubMed] [Google Scholar]
10.
Patiño LC, Silgado D, Laissue P. A potential functional association between mutant BMPR2 and primary ovarian insufficiency. Syst Biol Reprod Med. 2017;63(3):145–149. [PubMed] [Google Scholar]
11.
Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808. [PMC free article] [PubMed] [Google Scholar]
12.
Bestetti I, Castronovo C, Sironi A, et al. . High-resolution array-CGH analysis on 46,XX patients affected by early onset primary ovarian insufficiency discloses new genes involved in ovarian function. Hum Reprod. 2019;34(3):574–583. [PMC free article] [PubMed] [Google Scholar]
13.
Funari MFA, de Barros JS, Santana LS, et al. . Evaluation of SHOX defects in the era of next-generation sequencing. Clin Genet. 2019;96(3):261–265. [PubMed] [Google Scholar]
14.
Sullivan SD, Welt C, Sherman S. FMR1 and the continuum of primary ovarian insufficiency. Semin Reprod Med. 2011;29(4):299–307. [PubMed] [Google Scholar]
15.
Nishimura-Tadaki A, Wada T, Bano G, et al. . Breakpoint determination of X;autosome balanced translocations in four patients with premature ovarian failure. J Hum Genet. 2011;56(2):156–160. [PubMed] [Google Scholar]
16.
Bione S, Sala C, Manzini C, et al. . A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet. 1998;62(3):533–541. [PMC free article] [PubMed] [Google Scholar]
17.
Bione S, Rizzolio F, Sala C, et al. . Mutation analysis of two candidate genes for premature ovarian failure, DACH2 and POF1B. Hum Reprod. 2004;19(12):2759–2766. [PubMed] [Google Scholar]
18.
Genesio R, Mormile A, Licenziati MR, et al. . Short stature and primary ovarian insufficiency possibly due to chromosomal position effect in a balanced X;1 translocation. Mol Cytogenet. 2015;8:50. [PMC free article] [PubMed] [Google Scholar]
19.
Bertini V, Ghirri P, Bicocchi MP, Simi P, Valetto A. Molecular cytogenetic definition of a translocation t(X;15) associated with premature ovarian failure. Fertil Steril. 2010;94(3):1097.e5–1097.e8. [PubMed] [Google Scholar]
20.
Chen CP, Su YN, Lin HH, et al. . De novo duplication of Xq22.1→q24 with a disruption of the NXF gene cluster in a mentally retarded woman with short stature and premature ovarian failure. Taiwan J Obstet Gynecol. 2011;50(3):339–344. [PubMed] [Google Scholar]
21.
Mansouri MR, Schuster J, Badhai J, et al. . Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet. 2008;17(23):3776–3783. [PMC free article] [PubMed] [Google Scholar]
22.
Lorda-Sanchez IJ, Ibañez AJ, Sanz RJ, et al. . Choroideremia, sensorineural deafness, and primary ovarian failure in a woman with a balanced X-4 translocation. Ophthalmic Genet. 2000;21(3):185–189. [PubMed] [Google Scholar]
23.
Lacombe A, Lee H, Zahed L, et al. . Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure. Am J Hum Genet. 2006;79(1):113–119. [PMC free article] [PubMed] [Google Scholar]
24.
Ledig S, Preisler-Adams S, Morlot S, Liehr T, Wieacker P. Premature ovarian failure caused by a heterozygous missense mutation in POF1B and a reciprocal translocation 46,X,t(X;3)(q21.1;q21.3). Sex Dev. 2015;9(2):86–90. [PubMed] [Google Scholar]
25.
Prueitt RL, Chen H, Barnes RI, Zinn AR. Most X;autosome translocations associated with premature ovarian failure do not interrupt X-linked genes. Cytogenet Genome Res. 2002;97(1-2):32–38. [PubMed] [Google Scholar]
26.
Dixit H, Rao LK, Padmalatha V, et al. . Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure. Menopause. 2005;12(6):749–754. [PubMed] [Google Scholar]
27.
França MM, Funari MFA, Nishi MY, et al. . Identification of the first homozygous 1-bp deletion in GDF9 gene leading to primary ovarian insufficiency by using targeted massively parallel sequencing. Clin Genet. 2018;93(2):408–411. [PubMed] [Google Scholar]
28.
Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet. 2004;75(1):106–111. [PMC free article] [PubMed] [Google Scholar]
29.
Patiño LC, Walton KL, Mueller TD, et al. . BMP15 mutations associated with primary ovarian insufficiency reduce expression, activity, or synergy with GDF9. J Clin Endocrinol Metab. 2017;102(3):1009–1019. [PubMed] [Google Scholar]
30.
Zhang W, Wang J, Wang X, et al. . A novel homozygous mutation of bone morphogenetic protein 15 identified in a consanguineous marriage family with primary ovarian insufficiency. Reprod Biomed Online. 2018;36(2):206–209. [PubMed] [Google Scholar]
31.
Mayer A, Fouquet B, Pugeat M, Misrahi M. BMP15 “knockout-like” effect in familial premature ovarian insufficiency with persistent ovarian reserve. Clin Genet. 2017;92(2):208–212. [PubMed] [Google Scholar]
32.
Qin Y, Choi Y, Zhao H, Simpson JL, Chen ZJ, Rajkovic A. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007;81(3):576–581. [PMC free article] [PubMed] [Google Scholar]
33.
Li L, Wang B, Zhang W, et al. . A homozygous NOBOX truncating variant causes defective transcriptional activation and leads to primary ovarian insufficiency. Hum Reprod. 2017;32(1):248–255. [PubMed] [Google Scholar]
34.
França MM, Funari MFA, Lerario AM, et al. . A novel homozygous 1-bp deletion in the NOBOX gene in two Brazilian sisters with primary ovarian failure. Endocrine. 2017;58(3):442–447. [PubMed] [Google Scholar]
35.
Zhao H, Chen ZJ, Qin Y, et al. . Transcription factor FIGLA is mutated in patients with premature ovarian failure. Am J Hum Genet. 2008;82(6):1342–1348. [PMC free article] [PubMed] [Google Scholar]
36.
Chen B, Li L, Wang J, et al. . Consanguineous familial study revealed biallelic FIGLA mutation associated with premature ovarian insufficiency. J Ovarian Res. 2018;11(1):48. [PMC free article] [PubMed] [Google Scholar]
37.
Yuan P, He Z, Sun S, et al. . Bi-allelic recessive loss-of-function mutations in FIGLA cause premature ovarian insufficiency with short stature. Clin Genet. 2019;95(3):409–414. [PubMed] [Google Scholar]
38.
Aittomäki K, Lucena JL, Pakarinen P, et al. . Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell. 1995;82(6):959–968. [PubMed] [Google Scholar]
39.
França MM, Lerario AM, Funari MFA, et al. . A novel homozygous missense FSHR variant associated with hypergonadotropic hypogonadism in two siblings from a Brazilian family. Sex Dev. 2017;11(3):137–142. [PubMed] [Google Scholar]
40.
Liu H, Xu X, Han T, et al. . A novel homozygous mutation in the FSHR gene is causative for primary ovarian insufficiency. Fertil Steril. 2017;108(6):1050–1055.e2. [PubMed] [Google Scholar]
41.
He WB, Du J, Yang XW, et al. . Novel inactivating mutations in the FSH receptor cause premature ovarian insufficiency with resistant ovary syndrome. Reprod Biomed Online. 2019;38(3):397–406. [PubMed] [Google Scholar]
42.
Liu H, Guo T, Gong Z, et al. . Novel FSHR mutations in Han Chinese women with sporadic premature ovarian insufficiency. Mol Cell Endocrinol. 2019;492:110446. [PubMed] [Google Scholar]
43.
Santos MG, Machado AZ, Martins CN, et al. . Homozygous inactivating mutation in NANOS3 in two sisters with primary ovarian insufficiency. Biomed Res Int. 2014;2014:787465. [PMC free article] [PubMed] [Google Scholar]
44.
Kasippillai T, MacArthur DG, Kirby A, et al. . Mutations in eIF4ENIF1 are associated with primary ovarian insufficiency. J Clin Endocrinol Metab. 2013;98(9):E1534–E1539. [PMC free article] [PubMed] [Google Scholar]
45.
Arnhold IJ, Lofrano-Porto A, Latronico AC. Inactivating mutations of luteinizing hormone beta-subunit or luteinizing hormone receptor cause oligo-amenorrhea and infertility in women. Horm Res. 2009;71(2):75–82. [PubMed] [Google Scholar]
46.
Lourenço D, Brauner R, Lin L, et al. . Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360(12):1200–1210. [PMC free article] [PubMed] [Google Scholar]
47.
Bose HS, Pescovitz OH, Miller WL. Spontaneous feminization in a 46,XX female patient with congenital lipoid adrenal hyperplasia due to a homozygous frameshift mutation in the steroidogenic acute regulatory protein. J Clin Endocrinol Metab. 1997;82(5):1511–1515. [PubMed] [Google Scholar]
48.
Peng J, Li Q, Wigglesworth K, et al. . Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci U S A. 2013;110(8):E776–E785. [PMC free article] [PubMed] [Google Scholar]
49.
Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev. 2002;23(6):787–823. [PubMed] [Google Scholar]
50.
Laissue P, Christin-Maitre S, Touraine P, et al. . Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur J Endocrinol. 2006;154(5):739–744. [PubMed] [Google Scholar]
51.
Kovanci E, Rohozinski J, Simpson JL, Heard MJ, Bishop CE, Carson SA. Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil Steril. 2007;87(1):143–146. [PubMed] [Google Scholar]
52.
Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383(6600):531–535. [PubMed] [Google Scholar]
53.
Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004;305(5687):1157–1159. [PubMed] [Google Scholar]
54.
Ballow D, Meistrich ML, Matzuk M, Rajkovic A. Sohlh1 is essential for spermatogonial differentiation. Dev Biol. 2006;294(1):161–167. [PubMed] [Google Scholar]
55.
Bayram Y, Gulsuner S, Guran T, et al. . Homozygous loss-of-function mutations in SOHLH1 in patients with nonsyndromic hypergonadotropic hypogonadism. J Clin Endocrinol Metab. 2015;100(5):E808–E814. [PMC free article] [PubMed] [Google Scholar]
56.
Ballow DJ, Xin Y, Choi Y, Pangas SA, Rajkovic A. Sohlh2 is a germ cell-specific bHLH transcription factor. Gene Expr Patterns. 2006;6(8):1014–1018. [PubMed] [Google Scholar]
57.
Choi Y, Yuan D, Rajkovic A. Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression. Biol Reprod. 2008;79(6):1176–1182. [PMC free article] [PubMed] [Google Scholar]
58.
Soyal SM, Amleh A, Dean J. FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development. 2000;127(21):4645–4654. [PubMed] [Google Scholar]
59.
Pangas SA, Choi Y, Ballow DJ, et al. . Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci U S A. 2006;103(21):8090–8095. [PMC free article] [PubMed] [Google Scholar]
60.
Qin Y, Zhao H, Kovanci E, Simpson JL, Chen ZJ, Rajkovic A. Analysis of LHX8 mutation in premature ovarian failure. Fertil Steril. 2008;89(4):1012–1014. [PMC free article] [PubMed] [Google Scholar]
61.
AlAsiri S, Basit S, Wood-Trageser MA, et al. . Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J Clin Invest. 2015;125(1):258–262. [PMC free article] [PubMed] [Google Scholar]
62.
Bouali N, Francou B, Bouligand J, et al. . New MCM8 mutation associated with premature ovarian insufficiency and chromosomal instability in a highly consanguineous Tunisian family. Fertil Steril. 2017;108(4):694–702. [PubMed] [Google Scholar]
63.
Wood-Trageser MA, Gurbuz F, Yatsenko SA, et al. . MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am J Hum Genet. 2014;95(6):754–762. [PMC free article] [PubMed] [Google Scholar]
64.
Desai S, Wood-Trageser M, Matic J, et al. . MCM8 and MCM9 nucleotide variants in women with primary ovarian insufficiency. J Clin Endocrinol Metab. 2017;102(2):576–582. [PMC free article] [PubMed] [Google Scholar]
66.
Colombo R, Pontoglio A, Bini M. A STAG3 missense mutation in two sisters with primary ovarian insufficiency. Eur J Obstet Gynecol Reprod Biol. 2017;216:269–271. [PubMed] [Google Scholar]
67.
He WB, Banerjee S, Meng LL, et al. . Whole-exome sequencing identifies a homozygous donor splice-site mutation in STAG3 that causes primary ovarian insufficiency. Clin Genet. 2018;93(2):340–344. [PubMed] [Google Scholar]
68.
França MM, Nishi MY, Funari MFA, et al. . Two rare loss-of-function variants in the STAG3 gene leading to primary ovarian insufficiency. Eur J Med Genet. 2019;62(3):186–189. [PubMed] [Google Scholar]
69.
Zangen D, Kaufman Y, Zeligson S, et al. . XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription. Am J Hum Genet. 2011;89(4):572–579. [PMC free article] [PubMed] [Google Scholar]
70.
Al-Agha AE, Ahmed IA, Nuebel E, et al. . Primary ovarian insufficiency and azoospermia in carriers of a homozygous PSMC3IP stop gain mutation. J Clin Endocrinol Metab. 2018;103(2):555–563. [PMC free article] [PubMed] [Google Scholar]
71.
Yang X, Touraine P, Desai S, et al. . Gene variants identified by whole-exome sequencing in 33 French women with premature ovarian insufficiency. J Assist Reprod Genet. 2019;36(1):39–45. [PMC free article] [PubMed] [Google Scholar]
72.
Wang J, Zhang W, Jiang H, Wu BL; Primary Ovarian Insufficiency Collaboration Mutations in HFM1 in recessive primary ovarian insufficiency. N Engl J Med. 2014;370(10):972–974. [PubMed] [Google Scholar]
73.
Zhe J, Chen S, Chen X, et al. . A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res. 2019;12(1):61. [PMC free article] [PubMed] [Google Scholar]
74.
Weinberg-Shukron A, Renbaum P, Kalifa R, et al. . A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis. J Clin Invest. 2015;125(11):4295–4304. [PMC free article] [PubMed] [Google Scholar]
75.
Ren Y, Diao F, Katari S, et al. . Functional study of a novel missense single-nucleotide variant of NUP107 in two daughters of Mexican origin with premature ovarian insufficiency. Mol Genet Genomic Med. 2018;6(2):276–281. [PMC free article] [PubMed] [Google Scholar]
76.
Huhtaniemi I, Hovatta O, La Marca A, et al. . Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends Endocrinol Metab. 2018;29(6):400–419. [PubMed] [Google Scholar]
77.
de Vries L, Behar DM, Smirin-Yosef P, Lagovsky I, Tzur S, Basel-Vanagaite L. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J Clin Endocrinol Metab. 2014;99(10):E2129–E2132. [PubMed] [Google Scholar]
78.
Lee KY, Im JS, Shibata E, et al. . MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun. 2015;6:7744. [PMC free article] [PubMed] [Google Scholar]
79.
Lutzmann M, Grey C, Traver S, et al. . MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination. Mol Cell. 2012;47(4):523–534. [PubMed] [Google Scholar]
80.
Smirin-Yosef P, Zuckerman-Levin N, Tzur S, et al. . A biallelic mutation in the homologous recombination repair gene SPIDR is associated with human gonadal dysgenesis. J Clin Endocrinol Metab. 2017;102(2):681–688. [PubMed] [Google Scholar]
81.
Carlosama C, Elzaiat M, Patiño LC, Mateus HE, Veitia RA, Laissue P. A homozygous donor splice-site mutation in the meiotic gene MSH4 causes primary ovarian insufficiency. Hum Mol Genet. 2017;26(16):3161–3166. [PubMed] [Google Scholar]
83.
Bachelot A, Gilleron J, Meduri G, et al. . A common African variant of human connexin 37 is associated with Caucasian primary ovarian insufficiency and has a deleterious effect in vitro. Int J Mol Med. 2018;41(2):640–648. [PMC free article] [PubMed] [Google Scholar]
84.
Fouquet B, Pawlikowska P, Caburet S, et al. . A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency. Elife. 2017;6:e30490. [PMC free article] [PubMed] [Google Scholar]
85.
Moriwaki M, Moore B, Mosbruger T, et al. . POLR2C mutations are associated with primary ovarian insufficiency in women. J Endocr Soc. 2017;1(3):162–173. [PMC free article] [PubMed] [Google Scholar]
86.
Chen A, Tiosano D, Guran T, et al. . Mutations in the mitochondrial ribosomal protein MRPS22 lead to primary ovarian insufficiency. Hum Mol Genet. 2018;27(11):1913–1926. [PMC free article] [PubMed] [Google Scholar]
87.
Wang B, Li L, Zhu Y, et al. . Sequence variants of KHDRBS1 as high penetrance susceptibility risks for primary ovarian insufficiency by mis-regulating mRNA alternative splicing. Hum Reprod. 2017;32(10):2138–2146. [PubMed] [Google Scholar]
88.
Zhang D, Liu Y, Zhang Z, et al. . Basonuclin 1 deficiency is a cause of primary ovarian insufficiency. Hum Mol Genet. 2018;27(21):3787–3800. [PubMed] [Google Scholar]
89.
Zhou Y, Qin Y, Qin Y, et al. . Wdr62 is involved in female meiotic initiation via activating JNK signaling and associated with POI in humans. Plos Genet. 2018;14(8):e1007463. [PMC free article] [PubMed] [Google Scholar]
90.
Delcour C, Amazit L, Patino LC, et al. . ATG7 and ATG9A loss-of-function variants trigger autophagy impairment and ovarian failure. Genet Med. 2019;21(4):930–938. [PubMed] [Google Scholar]
91.
Weinberg-Shukron A, Rachmiel M, Renbaum P, et al. . Essential role of BRCA2 in ovarian development and function. N Engl J Med. 2018;379(11):1042–1049. [PMC free article] [PubMed] [Google Scholar]
92.
Turchetti D, Zuntini R, Tricarico R, Bellacosa A. BRCA2 in ovarian development and function. N Engl J Med. 2019;380(11):1086–1087. [PubMed] [Google Scholar]
93.
Franca MM, Han X, Funari MFA, et al. . Exome sequencing reveals the POLR3H gene as a novel cause of primary ovarian insufficiency. J Clin Endocrinol Metab. 2019;104(7):2827–2841. [PMC free article] [PubMed] [Google Scholar]
94.
Patiño LC, Beau I, Morel A, et al. . Functional evidence implicating NOTCH2 missense mutations in primary ovarian insufficiency etiology. Hum Mutat. 2019;40(1):25–30. [PubMed] [Google Scholar]
95.
Tucker EJ, Grover SR, Robevska G, van den Bergen J, Hanna C, Sinclair AH. Identification of variants in pleiotropic genes causing “isolated” premature ovarian insufficiency: implications for medical practice. Eur J Hum Genet. 2018;26(9):1319–1328. [PMC free article] [PubMed] [Google Scholar]
96.
Chapman C, Cree L, Shelling AN. The genetics of premature ovarian failure: current perspectives. Int J Womens Health. 2015;7:799–810. [PMC free article] [PubMed] [Google Scholar]
97.
Simon AM, Goodenough DA, Li E, Paul DL. Female infertility in mice lacking connexin 37. Nature. 1997;385(6616):525–529. [PubMed] [Google Scholar]
98.
Bianchi E, Barbagallo F, Valeri C, et al. . Ablation of the Sam68 gene impairs female fertility and gonadotropin-dependent follicle development. Hum Mol Genet. 2010;19(24):4886–4894. [PubMed] [Google Scholar]
99.
Carlosama C, Patiño LC, Beau I, et al. . A novel mutation in KHDRBS1 in a patient affected by primary ovarian insufficiency. Clin. Endocrinol. 2018;89(2):245–246. [PubMed] [Google Scholar]
100.
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–364. [PubMed] [Google Scholar]
101.
Komatsu M, Waguri S, Chiba T, et al. . Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–884. [PubMed] [Google Scholar]
102.
Song ZH, Yu HY, Wang P, et al. . Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis. 2015;6:e1589. [PMC free article] [PubMed] [Google Scholar]
103.
Wang H, Wan H, Li X, et al. . Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res. 2014;24(7):852–869. [PMC free article] [PubMed] [Google Scholar]
104.
Yamaguchi J, Suzuki C, Nanao T, et al. . Atg9a deficiency causes axon-specific lesions including neuronal circuit dysgenesis. Autophagy. 2018;14(5):764–777. [PMC free article] [PubMed] [Google Scholar]
105.
White RJ. RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol. 2005;6(1):69–78. [PubMed] [Google Scholar]
106.
Bernard G, Chouery E, Putorti ML, et al. . Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. Am J Hum Genet. 2011;89(3):415–423. [PMC free article] [PubMed] [Google Scholar]
107.
Saitsu H, Osaka H, Sasaki M, et al. . Mutations in POLR3A and POLR3B encoding RNA Polymerase III subunits cause an autosomal-recessive hypomyelinating leukoencephalopathy. Am J Hum Genet. 2011;89(5):644–651. [PMC free article] [PubMed] [Google Scholar]
108.
Tétreault M, Choquet K, Orcesi S, et al. . Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. Am J Hum Genet. 2011;89(5):652–655. [PMC free article] [PubMed] [Google Scholar]
109.
Richards MR, Plummer L, Chan YM, et al. . Phenotypic spectrum of POLR3B mutations: isolated hypogonadotropic hypogonadism without neurological or dental anomalies. J Med Genet. 2017;54(1):19–25. [PMC free article] [PubMed] [Google Scholar]
110.
Dumortier A, Wilson A, MacDonald HR, Radtke F. Paradigms of notch signaling in mammals. Int J Hematol. 2005;82(4):277–284. [PubMed] [Google Scholar]
111.
Trombly DJ, Woodruff TK, Mayo KE. Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology. 2009;150(2):1014–1024. [PMC free article] [PubMed] [Google Scholar]
112.
Wan L, Han J, Liu T, et al. . Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair. Proc Natl Acad Sci U S A. 2013;110(26):10646–10651. [PMC free article] [PubMed] [Google Scholar]
113.
Kneitz B, Cohen PE, Avdievich E, et al. . MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 2000;14(9):1085–1097. [PMC free article] [PubMed] [Google Scholar]
114.
de Vries SS, Baart EB, Dekker M, et al. . Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 1999;13(5):523–531. [PMC free article] [PubMed] [Google Scholar]
115.
Bogliolo M, Surrallés J. Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr Opin Genet Dev. 2015;33:32–40. [PubMed] [Google Scholar]
116.
Kasak L, Punab M, Nagirnaja L, et al. ; GEMINI Consortium Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia. Am J Hum Genet. 2018;103(2):200–212. [PMC free article] [PubMed] [Google Scholar]
117.
Ma J, Zeng F, Schultz RM, Tseng H. Basonuclin: a novel mammalian maternal-effect gene. Development. 2006;133(10):2053–2062. [PubMed] [Google Scholar]
118.
Wasserman T, Katsenelson K, Daniliuc S, Hasin T, Choder M, Aronheim A. A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation. Mol Biol Cell. 2010;21(1):117–130. [PMC free article] [PubMed] [Google Scholar]
119.
Bilgüvar K, Oztürk AK, Louvi A, et al. . Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010;467(7312):207–210. [PMC free article] [PubMed] [Google Scholar]
120.
Sgourdou P, Mishra-Gorur K, Saotome I, et al. . Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep. 2017;7:43708. [PMC free article] [PubMed] [Google Scholar]
121.
Xia F, Taghian DG, DeFrank JS, et al. . Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci U S A. 2001;98(15):8644–8649. [PMC free article] [PubMed] [Google Scholar]
122.
Davies AA, Masson JY, McIlwraith MJ, et al. . Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001;7(2):273–282. [PubMed] [Google Scholar]
123.
Daum H, Peretz T, Laufer N. BRCA mutations and reproduction. Fertil Steril. 2018;109(1):33–38. [PubMed] [Google Scholar]
124.
Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G. The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol. 2011;12(4):259–265. [PubMed] [Google Scholar]
125.
Flores ER, Tsai KY, Crowley D, et al. . p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature. 2002;416(6880):560–564. [PubMed] [Google Scholar]
126.
Suh EK, Yang A, Kettenbach A, et al. . p63 protects the female germ line during meiotic arrest. Nature. 2006;444(7119):624–628. [PubMed] [Google Scholar]
127. Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle. 2010;9(18):3687–3699. [PMC free article] [PubMed] [Google Scholar]
128.
Pierce SB, Chisholm KM, Lynch ED, et al. . Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci U S A. 2011;108(16):6543–6548. [PMC free article] [PubMed] [Google Scholar]
129.
Pierce SB, Gersak K, Michaelson-Cohen R, et al. . Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am J Hum Genet. 2013;92(4):614–620. [PMC free article] [PubMed] [Google Scholar]
(责任编辑:佳学基因)